

NOAA Climate Program Review 1-3 April 2003 In Situ Ocean Observations Mike Johnson

- Describe the current activities, users, and requirements for activities.
- How do these activities contribute to NOAA's Climate Goal, as described in the NOAA Strategic Plan?
- How do these activities contribute to the Climate Change Science Program and the recent NRC Review?
- What are the current priorities? How are they determined?
- How have effort and resources been reallocated in the recent past to meet new priorities?
- Referring to the FY 03 Climate Operating Plan, what milestones and performance measures do these activities address? How is success determined?
- Financial information.

Initial System Design. It will Evolve. Now 40% complete.

□ Planned

Planned

Planned

Planned

Foundations

The initial system design is founded on the building blocks that have been put in place by the research programs and on years of international planning. International Sea Level Workshop

A Large-Scale CO₂ Observing Plan: In Situ Oceans and Atmosphere (LSCOP)

*International plan for carbon not yet available

Milestones

Initial Ocean Observing System Milestones including international contributions

Total System

System % Complete

Climate Observation Program \$13,663

\$5150 K CLIVAR C&GC

\$6042 K CLIVAR ENSO,PACS,IPRC

\$2471 K COSP

Matrix Management?

Ocean Observation Total: \$38,505 K

Essential <u>infrastructure</u> has to be established to ensure:

- -Integrity and continuity
- -Analysis into products
- -Assessment of why climate anomalies have arisen
- -Links to modeling and research
- -Clear delineated responsibility for oversight and health of the system, and resources to build and sustain under the 10 principles

Project Office for Climate Observation (OCO) A Division of OGP

- Subtask 1 -- System Monitoring
 - Status of globally distributed networks
 - Report statistics and metrics routinely and on demand
- Subtask 2 -- Evaluation
 - Expert Teams
- Subtask 3 -- Action
 - Advance the multi-year Program Plan
 - Support evolution of the in situ networks
- Subtask 4 -- Intra-agency, Interagency, and International Coordination
- Subtask 5 -- Annual Reports
 - Edit, produce, distribute (paper and electronic)
- Subtask 6 -- External Review
 - COSC

Ocean Component -- System Architecture

Priority Setting

NOAA FY 03-04 planning

(\$ million)	FY02	FY03	FY04
Tide gauges	1.2	1.2	1.5
Surface drifting buoys	1.9	2.4	3.0
Tropical moored buoys	3.8	3.8	4.3
Ships-of-Opportunity	3.3	3.3	4.2
Argo array	7.9	10.9	10.9
Ocean reference stations	3.1	3.3	3.7
Ocean carbon network	2.8	2.8	3.6
Dedicated ship time	6.0	6.0	6.1
Data and assimilation sub-systems	1.8	1.9	3.7
Management and product delivery	1.3	1.5	2.4
Total system	33.1	37.1	43.4
Increase over previous year		4.0	6.3

Climate Observation Program FY 03-04 planning

(\$ million)	FY02	FY03	FY04
Tide gauges	0.7	0.7	1.0
Surface drifting buoys	1.7	1.9	2.6
Tropical moored buoys	3.2	3.2	3.7
Ships-of-Opportunity	1.9	2.0	2.8
Ocean reference stations	1.5	1.7	2.3
Ocean carbon network	1.5	2.1	2.8
Data and assimilation sub-systems	1.1	1.1	2.4
Management and product delivery	0.4	0.4	1.2
Total system	13.7	15.0	19.7
Increase over previous year	1.7	1.3	5.7

FY 05 preliminary planning

- Incremental advancements across all networks
- CCRI emphasis on actions to bring immediate gain over the next 2-4 years
 - Sea level and sea surface temperature
 - Drifters
 - Tide Gauges
 - Carbon accelerate global survey from 14 to 10 year cycle
 - Global tropics, heat & water -- extend Tropical Moored Buoy network across Indian Ocean
 - Advance data assimilation capabilities for "what if" scenarios
 - Advance data access and sharing capabilities

	FY 2003 Spending Plan Climate Observa <i>fioSiițu</i> Ocean Components, funding by Network (\$ K)																							
						Cli	nate O	bserva						ing by	Netwo	rk (\$ l	K)							
	Sys	tem																						
Network	To	otal																						
					C&(GC	C&G0	COR	CO	SP	COSI	P Argo	COSI	P ODA	Lab bas	se ENS	Lab bas	se PAC	Lab	Base	Lab bas	e IPR(NN	MAO
	FY 02	FY 03	Change									_												FY 03
	1102	11 00	Change	1		00	1102		1102		1102	00 -		1 1 00	1102	1 1 00	1102		1102	00			1 1 02	
Tide Gauges	670	670	0		125	20									545	650								
Tide Gauges	070	070	0		123	20									343	050								-
7.10	1011	2101				• • • •		2.50		•••						40.50				40=				_
Drifters	1864	2101	237		375	298	354	368		200					950	1050			185	185				-
																								-
VOS	3267	3300	33	Н-	405	415	708	745	292	278					530	530			1332	1332				
				Ш																				
Tropical Moorings	3565	3565	0		600	600									2275	2275	300	300	390	390				
Argo	6559	7379	820		0	0	271	275			6288	7104												
Ocean Reference Stations	1538	1705	167		853	1020			685	685														
Arctic	343	389	46			53			343	336														
			1																					
Ocean Carbon Monitoring	1478	2104	626		0	0			1.470	2104														
Ocean Carbon Wontornig	14/0	2104	020		. 0	U			14/0	2104														
W. ID CI	100	0	120		. 100	0																		
Wind Profilers	128	0	-128		128	0																		-
		_																						-
Commercial Aircraft (water vap	or) 220	0	-220		220	0																		
																								-
SURFRAD	210	210	0		210	210																		_
																								_
Rain gauges	154	154	0		154	134												20						_
Dedicated Ship Time	14200	14200	0																				14200	14200
Service Argos data processing	1001	824	-177		193	105			16	130	180	180			612	409	0	0						
Data & Assimilation Subsyste	ms 2509	1799	-710		157	220	251	260					1438	696			180	320			483	303		
Program Management	785	753	-32	Ħ	136	186	96	101		50	386	386			2		165	5				25		
<i>G</i>	. 55		1 -	H																				
Contingency	14	0	-14	H	. 14	0																		
Contingency	14	U	-14	H	14	U																		
Overhead heldle-d-	0	3370	3370	H		1.40				250		1000		750								250		
Overhead holdback	0	3370	3370	\vdash		140				250		1980		750								250		
m . 1	2070-	40555		\vdash	25=2	2424		45.40	2611	40.22	-C	0.50	1.420		464	464			160=	460=	400		1.400-	1.4200
Total	38505	42523	4018	\vdash	3570	3401	1680	1749	2814	4033	6854	9650	1438	1446	4914	4914	645	645	1907	1907	483	578	14200	14200
				Н.																				
				Ш																				

ш

FY 2003 Spending Plan Climate Observation Program, funding by Network (\$ K)

		tem																				
Network	Te	otal		C	kGC	C&GO	CORC	· · · · ·	OSP	COSP Argo	CO	SP ODA	Lab ba	se FNSC	Lah ha	se PACS	Lah	Base	Lah ha	se IPRC	NMA	40
	FY 02	FY 03	Change		FY 03					FY 02 FY 03												
Tide Gauges	670	670	0	125	20								545	650								
Drifters	1679	1916	237	375	298	354	368		200				950	1050								
VOS	1935	1968	33	405	415	708	745	292	278				530	530								-
Tropical Moorings	3175	3175	0	600	600								2275	2275	300	300						
Argo	271	275	4	0	0	271	275															
Ocean Reference Stations	1538	1705	167	853	1020			685	685													
Arctic	0	53	53		53																	
Ocean Carbon Monitoring	1478	2104	626	0	0			1478	2104													
Wind Profilers	128	0	-128	128	0																	
Commercial Aircraft (water vapor	r) 220	0	-220	220	0																	
SURFRAD	210	210	0	210	210																	
Rain gauges	154	154	0	154	134											20						
Dedicated Ship Time	0	0	0																			
Service Argos data processing	821	644	-177	193	105			16	130				612	409	0	0						
Data & Assimilation Subsystems	1071	1103	32	157	220	251	260								180	320			483	303		
Program Management	399	367	-32	136	186	96	101		50				2		165	5				25		
Contingency	14	. 0	-14	14	0																	
Overhead holdback	0	640	640		140				250											250		
Total	13763	14984	1221	3570	3401	1680	1749	2471	3697	0	0 (0	4914	4914	645	645	0	0	483	578	0	0

